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Abstract 

We prove the integrability of the Poisson algebra of functions with compact supports of a 
noncompact manifold. We also determine a Lie subalgebra of vector fields which, weakly, in- 
tegrate the Poisson algebra of a not necessarily compact manifold covered by an exact symplectic 
manifold. 
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1. Introduction 

Lie’s third theorem asserts that any finite dimensional Lie algebra g is isomorphic to the 
Lie algebra R of some Lie group G. Recall that g consists of left invariant vector fields on G. 

The assertion of Lie’s third theorem is wrong in general for infinite dimensional Lie 
algebras. For counter-examples, we refer to [9,14]. 

An (infinite dimensional) topological Lie algebra 1 is said to be integrable if there exists 
an (infinite dimensional) Lie group G which is modeled on a Lie algebra isomorphic to 1. 
In such a case 1 will be said to be integrated by G. 

One of the main examples of infinite dimensional Lie algebras is the Lie algebra Vect(M) 
of vector fields on a compact manifold M which is integrated by the group Diff(M) of all 
diffeomorphisms of M [ 10,14-l 61, both spaces being endowed with the Cw topology. 

* Corresponding author. E-mail: donato@gyptis.univ-mrs.fr. Universitt de Provence & CNRS U.R.A. 225. 
I E-mail: banyaga@math.psu.edu. Partially supported by NSF grant DMS 94-03196. 

0393~0440/96/$15.00 Copyright 0 1996 Elsevier Science B.V. All rights reserved. 
SSDI 0393-0440(95)00039-9 



A. Banyaga, I? Donate/Journal of Geometry and Physics 19 (1996) 368-378 369 

An idea to integrate a Lie algebra 1 would be first to find a Lie algebra isomorphism 
between 1 and a Lie subalgebra B of Vect(M), for some smooth manifold M; we call this 
step the weak integration, and then check whether 0 is the Lie algebra of some Lie subgroup 
of Diff( M). This brings us to the question whether the second Lie’s fundamental theorem is 
true in the infinite dimensional setting. Unfortunately, there are Lie subalgebras of Vect(M) 
which may not be integrated by any subgroup of Diff(M) or by any other group. See for 
instance [ 15,161. We refer to [ 111 where sufficient conditions for the integration of Lie 
subalgebras of Vect( M) are given. 

This note focuses on the Lie algebra P(M, Q) of smooth real valued functions on a 
symplectic manifold (M, f2), with the Poisson bracket. This Lie algebrais called the Poisson 
algebra of (M, f2). 

It is known that if the symplectic manifold M is compact, then P(M, L?) is integrable 
(see for instance [ 11). Here we provide a new proof which has the advantage to generalize 
to the noncompact case and establishes the integrability of the Lie algebra Pc( M, L?) of 
smooth functions with compact supports on a noncompact symplectic manifold (M, 0) 

(Theorem 7). 
ln contrast with the functional analysis approaches of the authors cited above, our methods 

are more geometric in nature and use essentially various restrictions of the Weinstein chart 
for symplectic diffeomorphisms [20]. 

Michor [ 131 has introduced a topology on the group Diff( M) of smooth diffeomorphisms 
of a noncompact manifold, which makes it a Lie group modeled on Vect(M). But we do 
not know of any theorem dealing with the integrability of Lie subalgebras of Vect(M), with 
unrestricted supports. 

It is well known that if 0 is exact, then P(M, 62) is isomorphic to the Lie algebra &,(M x 

S’) of vector fields whose local flow preserve the contuctisation w of the exact symplectic 
form a. We generalize this to symplectic manifolds (M, Q) such that the pullback of Q to 
the universal covering fi of M is exact. We identify the subalgebra of C,(G x S’ ) which 
is isomorphic to P(M, 52) (Theorem 3). 

Finally we show that the group of strictly contact diffeomorphisms of a compact regular 
contact manifold is modeled on the Lie algebra of strictly contact vector fields (Theorem 9). 

From now on all manifolds will be assumed to be connected. 

2. Weak integration 

If (M, f2) is a symplectic manifold, the space Cm(M) of real valued functions on M is 
equipped with the Poisson bracket. Every f E C?(M) defines a vector field Xf given by 
the equation: ix, R = d f. The Poisson bracket of two functions is then defined by 

We point out that [Xf, Xg] = X(f,s~. (C”(M), { , }) is an infinite dimensional Lie algebra 
which we denote by P(M, Q), it is called the Poisson algebra of (M, Sz); it plays a major 
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role in several parts of Mathematics and Mechanics. Similary P,(M, 52) denotes the Poisson 
algebra of compactly supported functions. 

Proposition 1. If M is compact, then P(M, Q) is weakly integrable. For noncompact M, 
then the Poisson algebra P,(M, Sz) of compactly supportedfunctions is weakly integrable. 

Proof Let ,!ZQ(M) be the Lie algebra of symplectic vector fields, i.e. vector fields X on 
M such that i(X)Q is closed and let Ham(M) be the ideal of LQ(M) consisting of vector 
fields X such that i (X)Q is exact. The symplectic gradient mapping f H Xf is a surjective 
Lie algebra homomorphism from P(M, Q) to Ham(M), with kernel R, provided that M is 
connected. In other terms, we have an exact sequence of Lie algebras: 

0 + R -+ P(M,Q) + Ham(M) --f 0. 

According to Dumortier-Takens [7], the exact sequence above splits if and only if M is 
compact. Hence if M is compact, P(M, Q) is isomorphic (as a Lie algebra) with Ham(M) x 
R, which is a Lie subalgebra of Vect(M x S’). Hence P(M, Q) is weakly integrable if M 
is compact. 

In the noncompact case, the symplectic gradient map is an isomotphism between PC (M, Q) 
and Ham,(M) c Vect(M), the Lie algebra of compactly supported hamiltonian vector 
fields. 0 

Remark 2. If the symplectic form 52 of a (compact or noncompact) symplectic manifold M 
has discrete group of periods, then there exists an S’ principal bundle over M: x : E + M, 
with a contact form w on E such that rr*52 = dw. For each function f E P(M, a), one 
defines a unique vector field Yf on E characterized by 

i(Yf)w = f 0 n and i(Yf) dw = -d(f 0 n). 

One proves that Yf E 13,(E) and that f H Yf realizes a Lie algebra isomorphisms between 
P(M, Q) and L,(E) [8,18]. Here &,(E) denotes the Lie algebra of vector fields X on E 
such that LXO = 0, where Lx stands for the Lie derivative in the direction X. This shows 
that P(M, Sz) is weakly integrable if C? has discrete periods. 

In particular if 52 is exact, E = M x S’ is trivial and w = nra + rrT(dQ), where rri are 
the projections from E x S’ to each factor, (Y is a primitive of a, i.e. C2 = da! and d&J is the 
canonical l-form on S1 . 

Suppose now the pullback 6 = p*Q of the symplectic form 52 on M to its universal 
covering 2 is exact. Here p : M -+ M is the covering projection. The injective homomor- 
phism 

p* : P(M,R) + P(G,@, f++fOP 

identifies P(M, 52) with a subalgebra of P(G, 5) z ,Cc,(% x S’). Our next task is to 
determine exactly the subalgebra of &(fi x S’) with which P(M, 52) is isomorphic. 
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Theorem 3. Let (M, 52) be a symplectic manifold such that the pullback of 52 to the 
universal covering of M is exact, then P(M, Q) is isomorphic to the Lie algebra C of 
vectorjelds which strictly preserve the contact form of fi x S’ and which are invariant by 
a strictly contact action of a central extension of the fundamental group of M. 

Proof Recall we denoted by p : G -+ M the universal covering of M, and by 5 = p*Q 
the pulled back symplectic form on li?. The fundamental group nt (M) acts on $ by deck 
transformations. Moreover rrt (M) acts as a subgroup of Diff$M) the group of symplectic 
diffeomorphisms of the covering; indeed we have 

- Vc E 7rl(M), c*Q = c*p*R = p*0 = R, since po c = p. 

We suppose now that 6 is exact, and denote by (Y a potential: 6 = da. 
Keeping the previous notations, let us consider Y = li? x St on which we define the 

l-form: w = rr;(~ + ir;(dtI). We will denote the contact form o by 

dz 

We will need the following: 

Lemma 4. The fundamental group ~1 (M) of M admits a real central extension which acts 
on Y as a subgroup of the group of strictly contact difSeomorphisms of (Y, w). 

Proof The relation c*c = 6, c E rrt (M) implies d(c*a - cr) = 0. Since fi is simply 
connected, there exists a unique function fc E C’“(G), such that c*o - o = df, and 
f=(xo) = 0 for a fixed base point xu E G. 

Given ct and c2 in rrt (M) we have 

d( fc,c,) = (cl 0 c2)*o - a = c;(+ - a) + c;a! - o 

= c;(dfc, 1 + dfc, = d(fc, 0 c2 + fc,). 

Therefore 

fqq = fc, 0 c2 + fc, + U(C1, CZ), 

here u (cl, ~2) is constant. We claim that u is a 2-cocycle of nt (M) with real values. Indeed 
for any three elements in rrt (M), we have 

fc,c.*q = fqc2 0 c3 + fcj + u(ClC2, C3), 

on the other hand we also may write 

fc,czq = fc, 0 c2c3 + fczc3 + U(cI 9 c2c3) 

developing fcIc2 and fczc3 in each expression, leads after simplification to a 2-cocycle 
relation 

U(Cl,C2) +U(ClC2,C3) = U(C2,C3) +U(Cl,C2C3). 
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We pointed out that this cocycle has generally nontrivial cohomology class. It determines a 
central extension of rrt (M) by [w, i.e. a group structure on the Cartesian product nt (M) x [w 
with a modified product law 

(c1*r)(c2,t) = (c1c2,r +I +u(cl,c2)). 

We shall denote by rrt (M) x [w this extension, For all (c, r) E nt (M) xl [w we define 

(c,r):MxS’+MxS’ by (c, r-)(x, z) = (c(x), ze-‘fc(‘)ei’). 

We have now an action of the central extension on Y, indeed: 

(ct,r)[(c2,t)(x;z)] = (c1,r)(c2(x),ze-~~z(~)e”) 

= (~1 k-2(x)), ze- if& (c2(x))e-ifc2(x)eireir) 

= Cc10 c2(x), ze -i&,0 c2+.h,l(x),iO+r)) 

= (CIO c2(x), ze -ifr,r2(X)ei(‘+‘+U(cl,~2))) 

=(~IC~,~+~+U(C~,C~))(X,Z) 

= (~1, rl(c2, f)(x, z). 

It is clear that this action lifts the one of rrt (M) on E x St. 
Let us now compute (c, r)*o. We have 

(c, r)*w = (c, r)* 

but 

(c, r)* dz = d(ze -ifAx)eir) = (dz _ iz df,)e-‘fc(x)ei’, 

hence 

(c,r)*$ = 2 - df,, 

finally 

dz 
(c, r)*o = a! + df, + - - df, = w. 

12 
0 

Proof of Theorem 3 (continued). Consider the following subalgebra of Vect(Y): 

L: =(X E Vect(Y)/V(c,r) E rrt (M)x [w (c,r),X = X and L,Y.w = 0). 

Denote by B = po n the natural projection from Y onto M. Let 6 be the Reeb field of 
w. Recall that c is uniquely characterized by the following equations: i(t)o = 1 and 
i(e) do = 0. 

The vector field 4 is vertical for the projection 0, i.e. a*c = 0. Indeed 

0 = i(e) do = i(O(a*Q) = a*(i(a&)G). 
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Since L2 is a symplectic form, a*( = 0. Consequently, if f is a smooth function on M, then 

[ . (f o a) = i(c df = a*i(a&) df = 0. 

Therefore we can define a unique vector field Xf characterized by 

‘(X,f)O = fo c and i(Xf) do = -d(fo a). 

It is clear from Cartan’s formula that Lx,w = 0. For convenience we put G = n) (M)xl R. 
We have now to prove that Xf is G-invariant. It suffices to evaluate separately i(g,Xf)w 
and i(g*Xf) dw, for all g E G. We have 

i(g*Xf)w = g-‘*[i(xf)(g*w)] = g-‘*[i(xf)w] = g-‘*(fo a) = fo co g-’ 

sinceaog-’ =(~,weget 

i(g,X,f)w = fo 0. 

Similar computations lead to 

i(g.Jf) dw = -d(fo 0). 

Hence g*Xf = Xf so Xf E L. Conversely, any X E C defines a function f = i (X)w E 

C”(Y, R). As 

Lxo = i(X) dw + d(i(X)w) = 0, 

we get 

6. f = i(e)df = i(c)d(i(X)w) = -i(c)i(X)dw = i(X)i(c)dw = 0. 

Hence f is basic for the projection n. Moreover, if g E G we have 

g*f = fog = g*(i(X)w) = i(g,‘X)g*w 

= i(X)w = f (since g*X = X and g’w = w). 

Finally f is basic for po rr. Obviously f H Xf is a linear isomorphism from P(M, 52) 
onto C. The verification of the relation 

Xlf,gl = [Xf, x,1 

is straightforward and reproduces word by word the classical situation in prequantization 
[ 171. This completes the proof of Theorem 3. 0 

Examples 5. 
(1) If (M, J2) is riemannian with nonpositive curvature, it is a classical fact (Cartan) that 

@ is diffeomorphic to an euclidean space. Our theorem then applies in this case. This 
includes all surface of genus bigger than one. 
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(2) If G is a finite dimensional Lie group; its universal covering G^ satisfies H*(G^, IR) = 0, 
for the second homotopy group of any finite dimensional Lie group is trivial [6]. Hence 
a Lie group (G, 52) equipped with a symplectic form satisfies the hypothesis of our 
theorem. 

Remark 6. If the above action of rr1 (M) is totally discontinuous, then the orbit space 
N = Y/(X,(M)) is a smooth manifold and the natural projection in : N -+ M is a S’ 
bundle. Moreover the contact form on Y descends to a contact form w* on N such that 
n*SZ = dw*, and we are back in the prequantization framework as in Remark 2. The Lie 
algebra C descends to the Lie algebra of strictly contact vector fields of (N, w*). We will 
see (Theorem 9) that this Lie algebra is integrable. In general to check the integrability of 
C, one should refer to results of [9] or [ 111. We have not been able to do it so far. 

3. Integrability 

Let us first precise the topology on the considered spaces. If (M, Q) is a symplectic 
manifold, we denote by C,O” (M), Ham,(M), Diffsz,c (M) respectively the space of smooth 
compactly supported real functions on M, the globally hamiltonian compactly supported 
vector fields and the group of compactly supported symplectic diffeomorphisms of M. 
DiffD,,(M) (and similarly the other spaces introduced above) will be endowed with induc- 
tive limit topology: 

Diffo,,(M) = 2 DiffD(M)K, 

K 

where K runs over all compact subsets of M and DiffQ(M)K is the group of symplectic 
diffeomorphisms supported in K withre Coo topology. We denote by GQ (M) the identity 
component in Diffsz,c(M) and by Ga(M) its universal covering. 

We now recall the definition of the Calabi homomorphism 

y: GQTM) + H&M, R). 

Let 

IQ(M) ={ y: [O, 11 -+ Diffz,c(M)/y(0) = idu and (t, x) H v(t)(x) is C”) 

be the set of compactly supported symplectic isotopies, equipped with the compact-open C’ 
topology. Then GaTM) = IQ(M)/--, where y - p iff they are homotopic in Diff g,‘,c (M) 
with fixed end points. ni (Ga(M)) is then equal to the kernel of the natural projection 
GQTM) -+ Ga(M), namely: the homotopy classes of identity-based loops in GQ(M). 

If y E IQ(M) we define a family of vector fields +f in &(M), by 

The mapping, with values in the space Z,‘(M) of closed compactly supported l-forms, 
defined by 
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0 

induces a well defined surjective and continuous homomorphism 5, which is called the 
Calabi homomorphism. Denote now by r the subgroup of H,’ (M, R): 

I- = &I (Gn(M))). 

Finally we denote by 

S : Go(M) -+ H,‘(M, I-Q/l-, 

the induced homomorphism. We have the following result. 

Theorem 7. Suppose that r is totally disconnected (in particular if r is discrete), then: 
(1) ifthe symplectic manifold (M, f2) is noncompact, P,(M, Q) is integrated by the kernel 

ker S; 
(2) if the symplectic manifold (M, 52) is compact, then P(M, Q) is integrated by 

[Gn(M), Ga(Wl x S’. 

Proo$ The main ingredient is the Weinstein chart [ 191 which we now analyze closely. The 
graph ((x, I$(x)) E M x M) of a symplectic diffeomorphism $J of (M, L?) is a lagrangian 
submanifold of (M x M, f2*) where G’* = rr;Q - rrts2 (n; denoting the projections of 
M x M onto each factor. The graph of the identity is the diagonal A. If 4 has support in 
K then its graph coincides with A outside of K. By a theorem of Kostant-Weinstein [20], 
a neighborhood U of A in M x M is symplectically isomorphic with a neighborhood of 
the zero section of T*A 2: T*M. Hence symplectic diffeomorphisms which are Co close 
to the identity are in one-to-one correspondence with lagrangian submanifolds of T* M C” 
close to the zero section. If the symplectic diffeomorphism is C’ close to the identity then 
it corresponds to a submanifold of T*M which is the graph of a closed l-form. This is 
the Weinstein chart W : U + Z’(M), where 24 denotes a neighborhood of the identity 
in the C’ topology. Clearly, the supports of $J and W(4) coincide. We then get a chart 
W : U -+ ZL (M) from a neighborhood of the identity in Diff g,,( M) with a neighborhood 
of zero in the space of compactly supported closed l-forms. This means that the group of 
compactly supported symplectic diffeomorphisms of a noncompact symplectic manifold 
integrates the Lie algebra of symplectic vector fields with compact supports. 

If h E Z4 we let [W(h)] E H,‘(M,R) be the cohomology class of W(h). Let h; = 
W-‘(t W(h)) be the “canonical” isotopy from h to the identity, it is proved in [3] that 

%lh;l) = W’(h)]. 

Therefore if h E ker S then F(hF) E r. Moreover, by continuity of F, ?({hF]) is close 
to zero in H,’ (M, W) provided that h is close enough to the identity. Since the connected 
components of r are just single points [W(h)] = 0, i.e. W(h) is an exact compactly 
supported 1 -form. 
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Therefore the group ker S is modeled on the space Bb (M) of exact l-forms on M with 
compact supports. Note that, by the very definition, Ham,(M) is isomorphic to Bb (M). 

On the one hand, if M is not compact, BJ (M) and Cca (M) are isomorphic. For h E ker S 
therefore there exists a unique function fh with compact support such that W(h) = d(fh). 
For each point x E M, fh is defined as 

fh(x) = s W(h), 

where yx is an arbitrary Coo path joining x to an arbitrary fixed point xc. Clearly h w fh 
is a smooth correspondence between a neighborhood U = U rl ker S of the identity and 
a neighborhood of zero in C,"(M). This shows that if M is not compact, then P,(M, $2) 
is modeled on ker S. It remains to check that the Lie algebra K of ker S is isomorphic to 
P,(M, 52). As P,(M, 62) is identified with Ham,(M), we shall simply point out that K 
consists of Ham(M) (for compact or noncompact M). In fact, a vector field X belongs to 
K if X is the velocity of an isotopy ct lying in ker S and such that cc = idw (i.e. X(x) = 
(d/dt)c, (x) It = 0); it is shown in [3] that i (d,)52 is exact at any time t. In particular X = &J 
satisfies i (X)s2 = d f, and X E Ham(M). Conversely, let X denote a hamiltonian vector 
field and $J~ its flow. We have to verify that 4t E ker S, this is equivalent to the fact that, for 
all t, there exists an isotopy ys joining & to idw and such that IO1 i(ys)12 ds is exact. Taking 

~~=~~~wegetSdi(li,)nd~=rdf wherei(X)Q=df,so& ??kerSandX~~. 
On the other hand, if M is compact, we saw that Cm(M) = Ham(M) x aB as Lie 

algebras. Therefore, because Ham(M) is integrated by ker S, then Coo(M) = Ham(M) x [w 
is integrated by ker S x S’ . But for M compact, a deep theorem of [2] asserts that ker S is 
equal to the commutator subgroup [Gn(M), Go(M)]. Therefore [GQ(M), GQ(M)] x S' 
integrates C"(M). 0 

Remarks 8. 
(1) 

(2) 

The integrability of P(M, L?) in the compact case was first observed in [l] by different 
methods. 
The existence of Weinstein’s chart was crucial in the proof of Theorem 7. Likewise, 
Lychagin’s generalization of Weinstein chart [ 131 allows to integrate the Lie algebra 
of compactly supported contact vector fields of a noncompact contact manifold. The 
functional analysis approaches do not seem to work in the noncompact case. 

Let us now consider the case of a regular contact manifold (N, w) [5]. This means that 
the orbits of the Reeb fields 6 of w are all circles and induce a free S’ action on N. By 
Boothby-Wang theorem [5], the orbit space is a smooth symplectic manifold (M, Q) such 
that if n: N + M denotes the projection, then n*R = dw. Let G,(N) be the identity 
component in the group of diffeomorphisms of N preserving the contact form w, with the 
Coo topology. We saw in Remark 2 that &,,(N) is isomorphic to P(M, i2) and hence is 
integrated by [Ga(M), Ga(M)] x S'. We show next that C,(N) x P(M, f2) is integrated 
by another group. 
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Theorem 9. Let (N, w) be a compact regular contact manifold. Then G,(N) is modeled 
on C,(N). 

ProojI Let n : N + M be the Boothby-Wang bundle, over the symplectic manifold 

(M, 52). 
It is enough to show that G,(N) is locally isomorphic with ker S x S’. Indeed, it is 

proved in [4] that C,(N) is isomorphic as Lie algebra with Ham(M) x iw x B’(M) x iw, 
and we just proved in Theorem 7 that ker S integrates Ham(M). Hence G,(N) is modeled 
on Ham(M) x [w z C,(N). 

There is a natural projection p : G,(N) + ker S , ker S c Go(M), with kernel S’ It is 
enough to construct a local section over a domain V c ker S of the chart W : V --f B ’ (M) 
defined in Theorem 7. For h E V, consider the isotopy: h, = W -’ (t W(h)) E ker S and the 
family of vector fields & defined by the isotopy g, earlier in this section. By the Hodge-de 
Rham theorem, there is a smooth family of functions f, such that: i(i,)Q = df,. Recall 
that the contact form w is a connection on the Boothby-Wang bundle. Now for each t, let 
X, be the horizontal lift of gt (via the connection 0). Following 141, we consider the family 
of vector fields 

y, = Xf - (.fl on)C. 

One shows easily that Lr,w = 0, and that the family tit E G,,,(N) of diffeomorphisms of 
N obtained by integrating the family of vector fields Y, covers g,. The section cr over V is 
then defined by a(h) = ~$1. 0 
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